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Three-component synthesis of substituted b-(trifluoromethyl)pyrroles via Grob
cyclization of 1,1,1-trifluoro-3-nitrobut-2-ene with 1,3-dicarbonylic compounds
and ammonia or primary amines
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A B S T R A C T

A variety of substituted b-(trifluoromethyl)pyrroles were easily synthesized in good yields by a one-pot,

three-component Grob cyclization of 1,1,1-trifluoro-3-nitrobut-2-ene with 1,3-dicarbonyls (ethyl

acetoacetate, acetylacetone, benzoylacetone) and ammonia or primary aliphatic amines.
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1. Introduction

Much attention has been addressed to trifluoromethylated
heterocyclic compounds because they often show unique biological
and physiological activities [1]. In particular, trifluoromethyl-
substituted pyrroles and other five-membered heterocycles have
drawn considerable attention [2]. The search for a simple and
efficient access to such compounds with a CF3 group at a specific
position is one of the important goals in this area. However, there are
a limited number of regioselective syntheses of CF3-containing
heteroaromatic compounds in good yield. In the case of b-
(trifluoromethyl)pyrroles, only a few synthetic concepts have been
developed [1e].

These compounds have been synthesized by the modified Knorr
condensation from ethyl trifluoroacetoacetate and 1,3-dicarbonyls
in strong acid media [3]. Reaction of a-(trifluoromethyl)alkenyl
sulfones with ethyl isocyanoacetate in the presence of a base gave 4-
(trifluoromethyl)pyrrole-2-carboxylates in moderate to good yields
[4]. A one-step formation of the pyrrole ring from Michael acceptors
and tosylmethylisocyanide under basic conditions was reported by
van Leusen et al. [5]. The application of this procedure to the alkyl
(E)-4,4,4-trifluorobutenoates led to the corresponding 4-(trifluor-
omethyl)pyrrole-3-carboxylates [6]. Ogoshi and coworkers applied
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this procedure to the preparation of 3-acetyl-4-(polyfluoroalk-
yl)pyrroles in somewhat lower yields [7]. 1,3-Dipolar cycloaddi-
tion of munchnones (1,3-oxazolium 5-olates) to b-chloro-b-
(trifluoromethyl)vinyl phenyl ketone, butyl b-chloro-g,g,g-tri-
fluorocrotonate and polyfluoroacetylenic esters proceeds in a
regiospecific manner under mild reaction conditions, followed by
simultaneous decarboxylation to afford 4-(polyfluoroalkyl)pyr-
role-3-carboxylate derivatives [8]. Cyclodehydration of the
products obtained by oxygen-nitrogen exchange reaction of 4-
alkoxy-1,1,1-trifluoro-3-buten-2-ones with esters of a-aminoa-
cids, a-aminoacetophenone and 2,2-dimethoxyethylamine into
fluorine-containing pyrroles is also described [9]. In addition, the
introduction of a polyfluoroalkyl group in moderate yield was
achieved by 1,2-addition of Me3SiCN to b-alkoxyvinyl polyfluor-
oalkyl ketones, followed by reduction with LiAlH4 and subsequent
hydrolysis with intramolecular cyclization [10]. Although these
reaction sequences have been developed for the regioselective
introduction of a RF group in the pyrrole ring, there are remaining
problems to be solved, such as the handling of the materials and
availability of reagents. Herein we wish to demonstrate utility of
readily available (E)-1,1,1-trifluoro-3-nitrobut-2-ene 1 [11] as a
novel building block for the construction of 4-(trifluoromethyl)-
pyrroles bearing different electron-withdrawing substituents at
the 3-position via addition of push–pull enamines.

Nucleophilic addition of enamines to conjugated nitroalkenes is
an efficient method for preparation of cyclobutanes, 1,2-oxazine N-
oxides and nitroalkylated enamines or g-nitroketones [12] that, in
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Scheme 1. Compounds 3–5 obtained previously from nitrobutene 1.

Table 1
Synthesis of compounds 7a–r.

7 R1 R2 Yield (%)a

a OEt H 28

b OEt Me 66

c OEt Et 42

d OEt HO(CH2)2 50

e OEt Bn 75

f OEt Ph(CH2)2 69

g OEt 3,4-(MeO)2C6H3(CH2)2 57

h Me H 24

i Me Me 48

j Me Et 51

k Me HO(CH2)2 66

l Me Bn 64

m Me Ph(CH2)2 52

n Me 3,4-(MeO)2C6H3(CH2)2 48

o Ph H 25b

p Ph Bn 54

q Ph Ph(CH2)2 50

r Ph 3,4-(MeO)2C6H3(CH2)2 48

a Isolated yield.
b In propan-1-ol.

Fig. 1. Molecular structure of pyrrole 7q.
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turn, are widely used in organic synthesis [12,13]. We have
recently investigated the reaction of nitrobutene 1 with tertiary
enamines 2a,b and described the first example of spontaneous
ring-contraction–rearrangement of 1,2-oxazine N-oxides 3a into
1-pyrroline N-oxides 4 [14] and a new type of ring-ring
tautomerism between 1,2-oxazine N-oxides 3b and cyclobutanes
5 [15] (Scheme 1).

In this paper we report a general method for the preparation of
b-(trifluoromethyl)pyrroles, which is based on the three-compo-
nent variant of Grob cyclization. In this pyrrole synthesis,
nitroalkenes are commonly employed because the nitro group
can act both as a powerful stabilizer of the intermediate anion and
as a good nucleofuge in the aromatization forming a pyrrole ring. In
view of the utility of this reaction in synthetic chemistry [16], we
envisioned the use of nitrobutene 1 as a synthon for trifluor-
omethylated pyrroles, some of which represent a new class of
insect control agents [17]. Although there is one report on the
preparation of b-(trifluoromethyl)pyrroles by reaction of active
methylene compounds with 3,3,3-trifluoro-1-nitropropene, fol-
lowed by the reduction of the nitro group and subsequent
cyclization [18], the use of nitrobutene 1 in the synthesis of
CF3-containing heterocycles has not been reported, except for
compounds 3 and 4.

2. Results and discussion

We found that nitrobutene 1, which is easily obtainable from
fluoral hydrate and nitroethane [11], reacted with 1,3-dicarbonyls
(ethyl acetoacetate, acetylacetone and benzoylacetone) and
primary aliphatic amines at reflux in ethanol to give b-
(trifluoromethyl)pyrroles 7 in 42–75% yields. In most cases, the
reaction was complete after 1 h and the products could be isolated
by column chromatography over silica gel. The similar reaction of
25% aqueous solution of ammonia afforded N-unsubstituted
pyrroles 7a,h,o, albeit in lower yields (24–28%). The progress of
the reaction was monitored by 1H and 19F NMR spectroscopy, and
the results are summarized in Table 1. In the case of benzoyla-
cetone, the regiochemistry was controlled by the more reactive
acetyl group, which underwent preferential attack on the amine.
The structure of the benzoyl derivative 7q was confirmed by X-ray
crystal structure analysis (Fig. 1) [19]. A plausible pathway leading
to the formation of these compounds via intermediate aminoe-
nones 6 is outlined in Scheme 2 [16b]. In contrast to its homologue
1, (E)-3,3,3-trifluoro-1-nitropropene, lacking the methyl group,
failed to give the corresponding pyrroles on reaction with 1,3-
dicarbonyls and aliphatic amines under the same conditions. This
indicated that cyclization in the case of a primary nitronate is not
efficient.

This approach is the first example of successful three-
component Grob synthesis of fully substituted b-(trifluoro-
methyl)pyrroles 7 and has advantages with regard to ease of
operation and the ready availability of starting materials. It should
be noted that primary and secondary push–pull enamines 6 could
be employed directly under these conditions to give pyrroles 7 in
40–65% yields, however, a one-pot three-component reaction is
much more convenient. Note that in contrast to enamines 6,
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tertiary push–pull enamines 2b, lacking the labile hydrogen atom,
react with 1 to give compounds 3b and 5 (Scheme 1).

The reaction slightly depends on the substituent of the active
methylene compound. One possible explanation is a greater
capacity in delocalizing the electron pair of enamine nitrogen atom
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Scheme 3. Reactions of 1 with anilines and dimedone enamine.
onto the acyl group in intermediates A (R1 = Me, Ph) than in A,
which bearing ethoxycarbonyl substituent. This delocalization
may prevent nucleophilic intramolecular attack and ring closure
[16f]. Substituents R2 on amine had no great effect on the reaction
course to give pyrroles 7a–r (Scheme 2, Table 1).

The above results prompted us to examine the reaction with
aromatic amines. However, in the case of nitroalkene 1,
acetylacetone and anisidine or 3,4-xylidine, the reaction resulted
in preferential formation of the previously known diastereomeric
adducts 8s,t [20], with formation of b-(trifluoromethyl)pyrroles
7s,t in 18–27% yields, based on the 1H NMR spectra of a crude
reaction mixture. All our attempts to obtain 7s,t as the sole
products were fruitless. Thus, b-(trifluoromethyl)pyrroles from
anilines are formed more slowly than the corresponding Michael
adducts. A similar reaction of dimedone enamine with 1 yielded
exclusively compound 9 in 31% yield as a 75:25 mixture of
diastereomers without formation of any detectable amounts of the
corresponding pyrrole (Scheme 3).

The structures of pyrroles 7 were confirmed by elemental
analysis, 1H, 19F, 13C NMR, and IR spectroscopy. In the 19F NMR
spectra the trifluoromethyl group appeared as a quartet at d 107.4–
108.6 ppm (C6F6) with 5JF,H = 1.7–2.5 Hz for 7a–g and 109.4–
111.1 ppm with 5JF,H = 1.3–1.5 Hz for 7o–r; the CF3 group of 7i–n
manifests itself as a slightly broadened singlet at d 110.5–
111.0 ppm. The 13C NMR spectra of 7b,f,n showed that the C-3,
C-5 and C-4 atoms were coupled with the fluorine atoms of the
trifluoromethyl group with 3JC,F = 1.7–1.8, 3.5–3.7 Hz and
2JC,F = 34.7–35.1 Hz, respectively; the Me-5 group was also coupled
with 4JC,F = 2.7–3.1 Hz. The intensive absorption bands in the IR
spectra in the ranges 1684–1706 cm�1 and 1616–1665 cm�1 were
attributed to the ester and ketone carbonyl groups.

3. Conclusion

In conclusion, we have shown that the three-component Grob
cyclization of (E)-1,1,1-trifluoro-3-nitrobut-2-ene with 1,3-dicar-
bonyls and primary aliphatic amines provides a simple and
convenient approach to substituted 4-(trifluoromethyl)pyrroles
bearing different electron-withdrawing substituents at the 3-
position. This new synthesis of b-(trifluoromethyl)pyrroles
proceeds under mild conditions and the starting materials are
readily available.

4. Experimental

NMR spectra were recorded on a Bruker DRX-400 (1H –
400 MHz, 13C – 100 MHz, and 19F – 376 MHz) and AVANCE-500 (1H
– 500 MHz and 13C – 126 MHz) spectrometers in DMSO-d6 and
CDCl3 with TMS and C6F6 as internal standards, respectively. IR
spectra were recorded on a Perkin-Elmer Spectrum BX-II instru-
ment as KBr discs. Elemental analyses were performed at the
Microanalysis Services of the Institute of Organic Synthesis, Ural
Branch, Russian Academy of Sciences. All solvents used were dried
and distilled per standard procedures. The starting (E)-1,1,1-
trifluoro-3-nitrobut-2-ene 1 was prepared according to described
procedure in 53% overall yield [11].

4.1. General procedure for the synthesis of pyrroles 7a–r

A solution of the corresponding 1,3-dicarbonyl (2.0 mmol),
amine (2.0 mmol) and nitroalkene 1 (0.31 g, 2.0 mmol) in ethanol
(1 mL) was refluxed for 1 h. After removal of the solvent under
reduced pressure, the residue was chromatographed on silica gel
(eluted with chloroform) to give compound 7 as an yellow oil or
solid. The solid formed was recrystallized from the corresponding
solvent to yield a colourless powder or needles.
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4.1.1. 3-Ethoxycarbonyl-2,5-dimethyl-4-(trifluoromethyl)-1H-

pyrrole (7a)

Yield 28%, mp 151–152 8C (CH2Cl2–hexane), colourless needles;
IR (KBr) 3312, 1687, 1608, 1559, 1544, 1478, 1449 cm�1; 1H NMR
(400 MHz, CDCl3) d 1.34 (t, J = 7.1 Hz, 3H, Me), 2.32 (q,
5JH,F = 2.4 Hz, 3H, Me-5), 2.45 (s, 3H, Me-2), 4.28 (q, J = 7.1 Hz,
2H, CH2O), 8.08 (br s, 1H, NH); 19F NMR (376 MHz, CDCl3) d 107.4
(q, 5JF,H = 2.5 Hz, CF3). Anal. Calcd for C10H12F3NO2: C, 51.07; H,
5.14; N, 5.96. Found: C, 50.84; H, 5.03; N, 5.85.

4.1.2. 3-Ethoxycarbonyl-1,2,5-trimethyl-4-(trifluoromethyl)-1H-

pyrrole (7b)

Yield 66%, mp 75–76 8C (60% propan-1-ol), colourless needles; IR
(KBr) 1706, 1583, 1539, 1460, 1441 cm�1; 1H NMR (400 MHz, CDCl3)
d 1.33 (t, J = 7.1 Hz, 3H, Me), 2.32 (q, 5JH,F = 1.7 Hz, 3H, Me-5), 2.47 (s,
3H, Me-2), 3.41 (s, 3H, MeN), 4.27 (q, J = 7.1 Hz, 2H, CH2O); 19F NMR
(376 MHz, CDCl3) d 108.4 (q, 5JF,H = 1.7 Hz, CF3); 13C NMR (126 MHz,
CDCl3) d 11.0 (q, 4JC,F = 3.1 Hz, Me-5), 11.4, 14.0, 30.3, 59.9, 109.1 (q,
2JC,F = 35.1 Hz, C-4), 109.7 (q, 3JC,F = 1.7 Hz, C-3), 124.1 (q,
1JC,F = 267.1 Hz, CF3), 129.8 (q, 3JC,F = 3.5 Hz, C-5), 136.1 (C-2),
164.4 (C55O). Anal. Calcd for C11H14F3NO2: C, 53.01; H, 5.66; N,
5.62. Found: C, 52.88; H, 5.59; N, 5.65.

4.1.3. 3-Ethoxycarbonyl-1-ethyl-2,5-dimethyl-4-(trifluoromethyl)-

1H-pyrrole (7c)
Yield 42%, yellow oil; IR (KBr) 1704, 1578, 1548, 1436,

1408 cm�1; 1H NMR (400 MHz, CDCl3) d 1.26 (t, J = 7.3 Hz, 3H,
MeCH2), 1.33 (t, J = 7.1 Hz, 3H, MeCH2O), 2.34 (q, 5JH,F = 1.9 Hz, 3H,
Me-5), 2.48 (s, 3H, Me-2), 3.87 (q, J = 7.3 Hz, 2H, CH2N), 4.27 (q,
J = 7.1 Hz, 2H, CH2O); 19F NMR (376 MHz, CDCl3) d 108.6 (q,
5JF,H = 1.9 Hz, CF3). Anal. Calcd for C12H16F3NO2: C, 54.75; H, 6.13;
N, 5.32. Found: C, 54.73; H, 6.30; N, 5.44.

4.1.4. 3-Ethoxycarbonyl-1-(2-hydroxyethyl)-2,5-dimethyl-4-

(trifluoromethyl)-1H-pyrrole (7d)

Yield 50%, yellow oil; IR (KBr) 3447, 1733, 1698, 1578, 1548, 1436,
1405 cm�1; 1H NMR (400 MHz, CDCl3) d 1.33 (t, J = 7.1 Hz, 3H, Me),
2.36 (q, 5JH,F = 1.8 Hz, 3H, Me-5), 2.49 (s, 3H, Me-2), 3.83, 4.00 (both t,
J = 5.7 Hz, 2H, CH2), 4.27 (q, J = 7.1 Hz, 2H, CH2O); 19F NMR (376 MHz,
CDCl3) d 108.4 (q, 5JF,H = 1.8 Hz, CF3). Anal. Calcd for C12H16F3NO3: C,
51.61; H, 5.78; N, 5.02. Found: C, 51.32; H, 6.08; N, 4.79.

4.1.5. 1-Benzyl-3-ethoxycarbonyl-2,5-dimethyl-4-(trifluoromethyl)-

1H-pyrrole (7e)

Yield 75%, yellow oil; IR (KBr) 1705, 1651, 1601, 1583, 1548,
1434, 1407 cm�1; 1H NMR (500 MHz, CDCl3) d 1.35 (t, J = 7.1 Hz,
3H, Me), 2.25 (q, 5JH,F = 1.9 Hz, 3H, Me-5), 2.42 (s, 3H, Me-2), 4.30
(q, J = 7.1 Hz, 2H, CH2O), 5.08 (s, 2H, CH2), 6.89 (d, J = 7.2 Hz, 2H,
Ph), 7.26–7.35 (m, 3H, Ph); 19F NMR (376 MHz, CDCl3) d 108.5 (q,
5JF,H = 1.9 Hz, CF3). Anal. Calcd for C17H18F3NO2: C, 62.76; H, 5.58;
N, 4.31. Found: C, 62.53; H, 5.36; N, 4.74.

4.1.6. 3-Ethoxycarbonyl-2,5-dimethyl-4-(trifluoromethyl)-1-

phenethyl-1H-pyrrole (7f)
Yield 69%, mp 90–91 8C (hexane), colourless powder; IR (KBr)

1687, 1647, 1595, 1550, 1499, 1455, 1430 cm�1; 1H NMR
(400 MHz, CDCl3) d 1.34 (t, J = 7.1 Hz, 3H, Me), 2.20 (q,
5JH,F = 2.0 Hz, 3H, Me-5), 2.39 (s, 3H, Me-2), 2.88, 4.01 (both t,
J = 7.6 Hz, 2H, CH2), 4.28 (q, J = 7.1 Hz, 2H, CH2O), 7.04–7.08 (m, 2H,
Ph), 7.25–7.33 (m, 3H, Ph); 19F NMR (376 MHz, CDCl3) d 108.5 (q,
5JF,H = 2.0 Hz, CF3); 13C NMR (126 MHz, CDCl3) d 10.8 (q,
4JC,F = 3.1 Hz, Me-5), 11.2, 14.0, 36.7, 45.1, 60.0, 109.5 (q,
2JC,F = 35.0 Hz, C-4), 110.1 (q, 3JC,F = 1.7 Hz, C-3), 124.1 (q,
1JC,F = 267.3 Hz, CF3), 127.2, 128.7, 128.9, 129.4 (q, 3JC,F = 3.5 Hz,
C-5), 135.7, 137.2, 164.5 (C55O). Anal. Calcd for C18H20F3NO2: C,
63.71; H, 5.94; N, 4.13. Found: C, 63.76; H, 5.88; N, 4.23.
4.1.7. 3-Ethoxycarbonyl-1-(3,4-dimethoxyphenethyl)-2,5-dimethyl-

4-(trifluoromethyl)-1H-pyrrole (7g)

Yield 57%, mp 67–68 8C (hexane), colourless powder; IR (KBr)
1684, 1592, 1545, 1516, 1434 cm�1; 1H NMR (400 MHz, CDCl3) d
1.33 (t, J = 7.1 Hz, 3H, Me), 2.16 (q, 3H, Me-5, 5JH,F = 2.0 Hz), 2.32 (s,
3H, Me-2), 2.83 (t, J = 7.0 Hz, 2H, CH2), 3.77 (s, 3H, MeO), 3.86 (s, 3H,
MeO), 4.00 (t, J = 7.0 Hz, 2H, CH2), 4.27 (q, J = 7.1 Hz, 2H, CH2O), 6.31
(d, J = 1.9 Hz, 1H, H-20), 6.63 (dd, J = 8.1, 1.9 Hz, 1H, H-60), 6.79 (d,
J = 8.1 Hz, 1H, H-50); 19F NMR (376 MHz, CDCl3) d 108.6 (q,
5JF,H = 2.0 Hz, CF3); 13C NMR (126 MHz, CDCl3) d 10.8 (q,
4JC,F = 3.1 Hz, Me-5), 11.2 (Me), 14.0 (Me), 36.1, 45.1, 55.8, 56.0,
60.0, 109.5 (q, 2JC,F = 35.0 Hz, C-4), 110.2 (q, 3JC,F = 1.8 Hz, C-3), 111.6,
112.0, 120.7, 124.1 (q, 1JC,F = 267.3 Hz, CF3), 129.5 (q, 3JC,F = 3.5 Hz, C-
5), 129.7, 135.8, 148.3, 149.2, 164.5 (C55O). Anal. Calcd for
C20H24F3NO4: C, 60.14; H, 6.06; N, 3.51. Found: C, 59.97; H, 6.17;
N, 3.59.

4.1.8. 3-Acetyl-2,5-dimethyl-4-(trifluoromethyl)-1H-pyrrole (7h)

Yield 24%, mp 212–213 8C (ethanol), colourless needles; IR
(KBr) 3230, 3183, 1633, 1604, 1530, 1441, 1418 cm�1; 1H NMR
(400 MHz, DMSO-d6) d 2.23 (q, 5JH,F = 2.6 Hz, 3H, Me-5), 2.32 (s, 3H,
Me-2), 2.38 (s, 3H, Ac), 11.54 (br s, 1H, NH); 19F NMR (376 MHz,
CDCl3) d 111.0 (q, 5JF,H = 2.7 Hz, CF3). Anal. Calcd for C9H10F3NO: C,
52.69; H, 4.91; N, 6.83. Found: C, 52.59; H, 4.72; N, 6.69.

4.1.9. 3-Acetyl-1,2,5-trimethyl-4-(trifluoromethyl)-1H-pyrrole (7i)
Yield 48%, colourless crystals; IR (KBr) 1662, 1573, 1540,

1432 cm�1; 1H NMR (400 MHz, CDCl3) d 2.32 (q, 5JH,F = 1.8 Hz, 3H,
Me-5), 2.35 (s, 3H, Me-2), 2.43 (q, 6JH,F = 1.2 Hz, 3H, Ac), 3.41 (s, 3H,
MeN); 19F NMR (376 MHz, CDCl3) d 110.6 (s, CF3). Anal. Calcd for
C10H12F3NO: C, 54.79; H, 5.52; N, 6.39. Found: C, 54.59; H, 5.51; N,
6.35.

4.1.10. 3-Acetyl-1-ethyl-2,5-dimethyl-4-(trifluoromethyl)-1H-

pyrrole (7j)
Yield 51%, yellow oil; IR (KBr) 1664, 1569, 1531, 1433, 1403 cm�1;

1H NMR (400 MHz, CDCl3) d 1.27 (t, J = 7.3 Hz, 3H, MeCH2), 2.34 (q,
3H, Me-5, 5JH,F = 1.8 Hz), 2.37 (s, 3H, Me-2), 2.44 (q, 6JH,F = 1.2 Hz, 3H,
Ac), 3.86 (q, J = 7.3 Hz, 2H, CH2); 19F NMR (376 MHz, CDCl3) d 110.7
(sept, JF,H = 1.4 Hz, CF3). Anal. Calcd for C11H14F3NO: C, 56.65; H, 6.05;
N, 6.01. Found: C, 56.27; H, 6.10; N, 5.88.

4.1.11. 3-Acetyl-1-(2-hydroxyethyl)-2,5-dimethyl-4-

(trifluoromethyl)-1H-pyrrole (7k)

Yield 66%, mp 73–74 8C (CH2Cl2–hexane), colourless powder; IR
(KBr) 3330, 1639, 1568, 1528, 1432, 1396 cm�1; 1H NMR
(400 MHz, CDCl3) d 2.00 (br s, 1H, OH), 2.35 (q, 5JH,F = 1.9 Hz,
3H, Me-5), 2.36 (s, 3H, Me-2), 2.43 (q, 6JH,F = 1.1 Hz, 3H, MeCO),
3.83, 3.99 (both t, J = 5.6 Hz, 2H, CH2); 19F NMR (376 MHz, CDCl3) d
110.5 (s, CF3). Anal. Calcd for C11H14F3NO2: C, 53.01; H, 5.66; N,
5.62. Found: C, 52.71; H, 5.46; N, 5.75.

4.1.12. 3-Acetyl-1-benzyl-2,5-dimethyl-4-(trifluoromethyl)-1H-

pyrrole (7l)
Yield 64%, yellow oil; IR (KBr) 1665, 1607, 1563, 1532, 1432,

1402 cm�1; 1H NMR (500 MHz, CDCl3) d 2.25 (q, 5JH,F = 1.6 Hz, 3H,
Me-5), 2.30 (s, 3H, Me-2), 2.48 (q, 6JH,F = 0.6 Hz, 3H, Ac), 5.07 (s, 2H,
CH2), 6.90 (d, J = 7.4 Hz, 2H, Ph), 7.27 � 7.37 (m, 3H, Ph); 19F NMR
(376 MHz, CDCl3) d 110.6 (s, CF3). Anal. Calcd for C16H16F3NO: C,
65.08; H, 5.46; N, 4.74. Found: C, 64.94; H, 5.36; N, 4.98.

4.1.13. 3-Acetyl-2,5-dimethyl-4-(trifluoromethyl)-1-phenethyl-1H-

pyrrole (7m)

Yield 52%, mp 70–71 8C (hexane), colourless powder; IR (KBr)
1655, 1577, 1526, 1498, 1452, 1436 cm�1; 1H NMR (400 MHz,
CDCl3) d 2.19 (s, 3H, Me-5), 2.27 (s, 3H, Me-2), 2.44 (s, 3H, Ac), 2.89,
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4.00 (both t, J = 7.5 Hz, 2H, CH2), 7.06 (d, J = 6.4 Hz, 2H, Ph),
7.25 � 7.34 (m, 3H, Ph); 19F NMR (376 MHz, CDCl3) d 110.6 (s, CF3);
13C NMR (126 MHz, CDCl3) d 10.6 (q, 4JC,F = 2.6 Hz, Me-5), 11.3, 31.0
(4JC,F = 3.7 Hz, MeCO), 36.7, 45.1, 108.5 (q, 2JC,F = 34.7 Hz, C-4),
120.8 (q, 3JC,F = 1.5 Hz, C-3), 124.4 (q, 1JC,F = 267.3 Hz, CF3), 127.2,
128.7, 128.9, 129.4 (q, 3JC,F = 3.7 Hz, C-5), 133.1, 137.1, 196.9
(C55O). Anal. Calcd for C17H18F3NO: C, 66.01; H, 5.87; N, 4.53.
Found: C, 66.00; H, 5.88; N, 4.55.

4.1.14. 3-Acetyl-1-(3,4-dimethoxyphenethyl)-2,5-dimethyl-4-

(trifluoromethyl)-1H-pyrrole (7n)

Yield 48%, mp 92–93 8C (hexane), colourless powder; IR (KBr)
1661, 1591, 1579, 1516, 1467, 1436 cm�1; 1H NMR (400 MHz,
CDCl3) d 2.14 (q, 5JH,F = 1.8 Hz, 3H, Me-5), 2.24 (s, 3H, Me-2), 2.43
(q, 6JH,F = 1.1 Hz, 3H, Ac), 2.84 (t, J = 7.1 Hz, 2H, CH2), 3.78, 3.86
(both s, 3H, MeO), 4.00 (t, J = 7.1 Hz, 2H, CH2), 6.34 (d, J = 1.9 Hz,
1H, H-20), 6.62 (dd, J = 8.1, 1.9 Hz, 1H, H-60), 6.80 (d, J = 8.1 Hz, 1H,
H-50); 19F NMR (376 MHz, CDCl3) d 110.6 (s, CF3); 13C NMR
(126 MHz, CDCl3) d 10.7 (q, 4JC,F = 2.7 Hz, Me-5), 11.4 (Me-2), 31.0
(q, 5JC,F = 3.7 Hz, MeCO), 36.1, 45.1, 55.8, 55.9, 108.4 (q,
2JC,F = 34.7 Hz, C-4), 111.5, 111.9, 120.7 (q, 3JC,F = 1.8 Hz, C-3),
120.8, 124.4 (q, 1JC,F = 267.4 Hz, CF3), 129.5 (q, 3JC,F = 3.7 Hz, C-5),
129.6, 133.3, 148.2, 149.1, 196.8 (C55O). Anal. Calcd for
C19H22F3NO3: C, 61.78; H, 6.00; N, 3.79. Found: C, 61.69; H,
5.94; N, 3.81.

4.1.15. 3-Benzoyl-2,5-dimethyl-4-(trifluoromethyl)-1H-pyrrole (7o)

Yield 25%, mp 182–183 8C (ethanol), colourless powder; IR
(KBr) 3243, 3196, 1616, 1596, 1580, 1535, 1450, 1423 cm�1; 1H
NMR (400 MHz, DMSO-d6) d 1.90 (s, 3H, Me-2), 2.29 (q,
5JH,F = 1.5 Hz, 3H, Me-5), 7.46–7.68 (m, 5H, Ph), 11.63 (br s, 1H,
NH); 19F NMR (376 MHz, DMSO-d6) d 111.1 (q, 5JF,H = 1.5 Hz, CF3);
13C NMR (126 MHz, DMSO-d6) d 11.6 (q, 4JC,F = 1.5 Hz, Me-5), 12.3
(Me-2), 108.0 (q, 2JC,F = 34.7 Hz, C-4), 118.0 (q, 3JC,F = 1.6 Hz, C-3),
124.4 (q, 1JC,F = 266.9 Hz, CF3), 128.4, 128.7, 128.9 (q, 3JC,F = 4.2 Hz,
C-5), 131.3, 132.3, 139.6, 191.4 (C55O). Anal. Calcd for C14H12F3NO:
C, 62.92; H, 4.53; N, 5.24. Found: C, 62.71; H, 4.30; N, 5.33.

4.1.16. 3-Benzoyl-1-benzyl-2,5-dimethyl-4-(trifluoromethyl)-1H-

pyrrole (7p)

Yield 54%, yellow oil; IR (KBr) 1651, 1599, 1582, 1557, 1497,
1449, 1435 cm�1; 1H NMR (400 MHz, CDCl3) d 2.04 (s, 3H, Me-2),
2.29 (q, 5JH,F = 1.4 Hz, 3H, Me-5), 5.09 (s, 2H, CH2), 6.95 (d,
J = 7.2 Hz, 2H, Ph), 7.28–7.85 (m, 8H, Ph); 19F NMR (376 MHz,
CDCl3) d 109.5 (q, 5JF,H = 1.4 Hz, CF3). Anal. Calcd for C21H18F3NO: C,
70.58; H, 5.08; N, 3.92. Found: C, 70.78; H, 5.37; N, 4.29.

4.1.17. 3-Benzoyl-2,5-dimethyl-4-(trifluoromethyl)-1-phenethyl-

1H-pyrrole (7q)

Yield 50%, mp 85–86 8C (CH2Cl2–hexane), colourless prisms; IR
(KBr) 1659, 1646, 1623, 1597, 1580, 1542, 1450, 1440, 1406 cm�1;
1H NMR (400 MHz, CDCl3) d 1.89 (s, 3H, Me-2), 2.25 (q, 3H, Me-5,
5JH,F = 1.4 Hz), 2.95, 4.03 (both t, J = 7.2 Hz, 2H, CH2), 7.07 (d,
J = 7.0 Hz, 2H, Ph), 7.27–7.56 (m, 6H, Ph), 7.77 (dd, J = 7.0, 8.2 Hz,
2H, Ph); 19F NMR (376 MHz, CDCl3) d 109.4 (q, 5JF,H = 1.4 Hz, CF3);
13C NMR (126 MHz, CDCl3) d 10.5 (q, 4JC,F = 1.7 Hz, Me-5), 11.1,
36.8, 45.3, 110.1 (q, 2JC,F = 35.1 Hz, C-4), 118.8 (q, 3JC,F = 1.7 Hz, C-
3), 124.1 (q, 1JC,F = 267.7 Hz, CF3), 127.2, 128.2, 128.9, 129.0, 129.2
(q, 3JC,F = 3.9 Hz, C-5), 129.6, 130.7, 132.6, 137.3, 139.5, 193.3
(C55O). Anal. Calcd for C22H20F3NO: C, 71.15; H, 5.43; N, 3.77.
Found: C, 71.41; H, 5.28; N, 3.97.

4.1.18. 3-Benzoyl-1-(3,4-dimethoxyphenethyl)-2,5-dimethyl-1H-

pyrrole (7r)
Yield 48%, mp 81–82 8C (CH2Cl2–hexane), colourless powder; IR

(KBr) 1639, 1595, 1579, 1530, 1515, 1466, 1446, 1398 cm�1; 1H
NMR (400 MHz, CDCl3) d 1.88 (s, 3H, Me-2), 2.23 (q, 5JH,F = 1.3 Hz,
3H, Me-5), 2.89 (t, J = 6.8 Hz, 2H, CH2), 3.81 (s, 3H, MeO), 3.87 (s,
3H, MeO), 4.03 (t, J = 6.8 Hz, 2H, CH2), 6.41 (s, 1H, H-20), 6.63 (d,
J = 8.2 Hz, 1H, H-60), 6.81 (d, J = 8.2 Hz, 1H, H-50), 7.41 (t, J = 7.5 Hz,
2H, H-300, H-500), 7.53 (t, J = 7.4 Hz, 1H, H-400), 7.75 (d, J = 7.5 Hz, 2H,
H-200, H-600); 19F NMR (376 MHz, CDCl3) d 109.4 (q, 5JF,H = 1.3 Hz,
CF3); 13C NMR (126 MHz, CDCl3) d 10.6 (q, 4JC,F = 1.7 Hz, Me-5), 11.3
(Me-2), 36.2, 45.3, 55.8, 56.0, 110.0 (q, 2JC,F = 35.0 Hz, C-4), 111.6,
112.1, 118.8 (q, 3JC,F = 1.7 Hz, C-3), 120.9, 124.1 (q, 1JC,F = 267.8 Hz,
CF3), 128.2, 129.4 (q, 3JC,F = 3.8 Hz, C-5), 129.5, 129.8, 130.7, 132.6,
139.4, 148.3, 149.2, 193.1 (C55O). Anal. Calcd for C24H24F3NO3: C,
66.81; H, 5.61; N, 3.25. Found: C, 66.65; H, 5.51; N, 3.38.

4.1.19. 3-Amino-5,5-dimethyl-2-[2-nitro-1-

(trifluoromethyl)propyl]-2-cyclohexen-1-one (9)

Yield 31%, mp 212–213 8C (decomp.) (propan-1-ol), colourless
powder; IR (KBr) 3432, 3356, 3186, 1677, 1608, 1548, 1454, 1422,
1410, 1390, 1369, 1361 cm�1; 1H NMR (400 MHz, DMSO-d6) major
isomer (75%) d 0.96 (s, 6H, 2Me), 1.29 (d, J = 6.5 Hz, 3H, Me), 2.04 (s,
2H, CH2), 2.31 (d, J = 16.6 Hz, 1H, CHH), 2.33 (d, J = 16.6 Hz, 1H,
CHH), 4.06 (dq, 3JH,H = 9.9 Hz, 3JF,H = 9.0 Hz, 1H, H-10), 5.84 (dq,
3J = 9.9, 6.5 Hz, 1H, H-20), 7.38 (br s, 2H, NH2); minor isomer (25%)
0.94 (s, 6H, 2Me), 1.27 (d, J = 7.1 Hz, 3H, Me), 2.15 (s, 2H, CH2), 2.31
(d, J = 16.6 Hz, 1H, CHH), 2.33 (d, J = 16.6 Hz, 1H, CHH), 5.23 (quint,
J = 10.8 Hz, 1H, H-10), 5.90–6.00 (m, 1H, H-20), 6.81 (br s, 2H, NH2);
19F NMR (376 MHz, DMSO-d6) major isomer (75%) d 96.8 (d,
3JF,H = 9.0 Hz, CF3), minor isomer (25%) 97.2 (d, 3JF,H = 11.0 Hz, CF3).
Anal. Calcd for C12H17F3N2O3: C, 48.98; H, 5.82; N, 9.52. Found: C,
48.59; H, 5.72; N, 9.31.
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